

第3.1版

平成 29 年 1 月 23 日

特殊電子回路株式会社

目次

1.	はじる	めに	3
2.	仕様.		3
3.	装置の	の説明	4
3	. 1	装置写真	4
3	. 2	コネクタ配置	6
3	. 3	スイッチ	11
3	. 4	LED	12
3	. 5	クロック	12
4.	起動フ	方法	13
4	. 1	通常の起動	13
4	. 2	デバッグ時の起動	13
4	. 3	電源の供給	13
5.	サンフ	プルアプリケーション	14
5	. 1	機器の設定	14
5	. 2	自動実行スクリプトの編集	14
5	. 3	電源の投入	15
5	. 4	Web アプリケーションの起動	16
5	. 5	ADC の設定	17
5	. 6	波形モニタ方法	18
5	. 7	FFT とヒストグラム表示	20
5	. 8	ファイル機能	20
6.	リモー	ート操作アプリ	23
7.	注意	事項	24

1. はじめに

当装置は、12bit・8ch・125MHzのマルチ・チャネル計測&データ処理ボードです。最大 32ch まで 拡張することができ、USB3.0 や Gigabit Ethernet を通じてホスト PC ヘデータを送ることができま す。

2. 仕様

当装置の仕様を表1に示します。

項目	值
型番	COSMOZ125 (本体基板)
	COSMOZ105
	COSMOZ80
CPU	デュアルコア Cortex-A9 533MHz
	メインメモリ 1GB
ADC 精度	12bit,14bit,16bit から選択
ADC チャネル数	基板1枚あたり8ch
	最大で 32ch
サンプリング速度	80MHz、100MHz または 125MHz
フルスケール	$-0.5V \sim +0.5V$
	※旧仕様では-0.1V~+0.1V
	※カスタマイズも可
アナログコネクタ	SMA コネクタ
消費電力	7W @8ch 時
使用可能メモリカード	SD カード/SDHC カード (32GB まで)
通信インタフェース	• Gigabit Ethernet
	PCI Express Gen2
	• USB3.0
	• USB2.0 (UART)

表1 当装置の仕様

3. 装置の説明

3.1 装置写真

当装置の基板表面の外観および主なコネクタとスイッチの名称と位置を写真1に示します。

写真1 メイン基板・表面の外観

基板表面の拡張コネクタには、32本の信号線(LVDS 16ペア)が配線されています。このコネクタ には拡張 ADC ボードを最大1枚装着することができます。基板表面の拡張コネクタに装着した場合 は、ADC のチャネルは 25~32 番となります。 基板裏面を写真2に示します。

写真2 メイン基板・裏面の外観

基板裏面の拡張コネクタには、64本の信号線(LVDS 32ペア)が配線されています。このコネクタ には拡張 ADC ボードを最大 2 枚装着することができます。基板表面の拡張コネクタに装着した場合 は、ADC のチャネルは 9~24 番となります。

3.2 コネクタ配置

(1) アナログ入力コネクタ

CN1~CN8は、アナログ入力コネクタです。アナログ入力のCH1~CH8に対応しています。コネ クタとチャネル番号の対応を図1に示します。アナログ入力コネクタは、SMA コネクタで、フルスケ ールは±0.5Vppです。入力は50ΩでGNDに接続されています。

図 1 SMA コネクタのピン配置対応図

(2) 汎用 GPIO

CN9は、2.54mm ピッチの汎用の GPIO で、振幅は 1.8V です。

写真3 汎用 GPIO コネクタと GPS 用コネクタ

ピン配置は以下の図2のようになっています。

図2 GPIO のピン配置

表 1 GPIO のピン番	皆号
---------------	----

信号名	FPGA ピン番号	信号名	FPGA ピン番号
EXT0	AA25	EXT1	AB25
EXT2	AC24	EXT3	AB24
EXT4	AC23	EXT5	AA23
EXT6	AB22	EXT7	Y20

EXT4 は FPGA の MRCC に接続されており、クロック入力として使うことができます。EXT2 は差動クロック入力の負側として使用することもできます。

(3) GPS コネクタ

コネクタ CN27 は GPS 用のコネクタです。ピン配置は図 3 のようになっています。ここには 1.8V の GPS モジュールを接続することができます。接続可能な GPS モジュールの型番の例として Lynx TECHNOLOGIES 社の RXM-GPS-F4-T が挙げられます。

図3 GPS コネクタのピン配置

このコネクタからは 1.8V と 3.3V の電源が供給されています。Rx、Tx は FPGA の PL の 1.8V I/O Bank に接続されているため、1.8V LVCMOS レベルの信号を与えてください。3.3V レベルの信号を接続し てはいけません。

表2 GPS コネクタのピン番号

信号名	FPGA ピン番号
Tx	AC17
Rx	AB17
1PPS	AB16

これらの信号の使用方法はボードでは規定されていないため、汎用の I/O として使うこともできます。GPS 用の信号として使うには、ZYNQ の UARTO を EMIO 経由で PL に出力して使用することが 望ましいと考えられます。

(4) USB2.0 (USB-UART)

CN24はUSB-UART(仮想 COM ポート)のコネクタです。USB-UARTはSillicon Labs 社の CP2104 というチップを使用しています。CP2104のデバイスドライバは下記の URL からダウンロードできま す。

http://www.silabs.com/Support%20Documents/Software/CP210x_VCP_Windows.zip

この USB-UART は ZYNQ の PS 部の UART1 につながっていて、ZYNQ のコンソールとホスト PC との間でキャラクタベースで通信することができます。

通信速度は 115200bps です。

また、Cosmo-Z本体の電源が入っていなくても、USB-UARTの電源はこの コネクタから供給されるので、Cosmo-Zの電源を ON/OFF するたびにターミ ナルソフトを接続・切断する必要はありません。

(4) USB3.0 コネクタ

CN26は、USB3.0 コネクタです。規格は Micro USB3.0 で、ボード上の EZ-USB FX3 を介して ZYNQ の PL に接続されています。

USB 3.0 SuperSpeed で通信した場合、最大 300~400MByte/秒の速度でホス ト PC とデータをやりとりできます。

このコネクタには USB2.0 MicroB ケーブルをつなぐこともでき、USB2.0 の 場合は最大 40MB/秒程度でデータをやりとりできます。

ただし、Cosmo-Zの現在の標準 FPGA では使用されていません。 デバイスドライバは付属の CD-ROM に同梱しています。

(5) GigabitEthernet $\neg \dot{x} \partial \beta$

CN21 は Gigabit Ethernet のコネクタです。Gigabit Ethernet は ZYNQ の PS 内の PHY に接続されていて、10/100/1000Mbps の速度で TCP/IP の通信をすることができます。

また、Power Over Ether を使って電源を供給することもできま す。本装置の定格動作時の電流は 5V で 1.2A 程度なので、消費電 力は 7W 程度です。Power Over Ether のクラス 1 で足りるでしょ う。

GigabitEthernet コネクタの上にあるのが、電源用コネクタです。2.1mm 規格の AC アダプタを接続 します。中心導体が+で、外側が GND です。

定格電圧は 5V DC です。12V を加えると本体基板が故障しますので、注意してください。 ※基板リビジョン 1.3 (NP1068C と記載)からは 12V でも故障しなくなりました。

(7) JTAG コネクタ

XILINX Platform Cable USB を接続するためのコネクタです。

(8) GTX コネクタ

ZYNQのギガビット・トランシーバ GTX2 と GTX3 のコネクタです。上側が送信用、下側が受信 用です。最大 6Gbps の速度で通信できます。Cosmo-Z の現在の標準 FPGA では使用されていません。

写真 8 GTX コネクタ

(9) Serial ATA コネクタ

HDD や SSD を接続するためのコネクタです。Cosmo-Z の現在の標準 FPGA では使用されていません。

写真9 SATA コネクタ

(10) PCI Express External Cabling コネクタ

PCI Express External Cabling を使ってホスト PC と接続す るためのコネクタです。Cosmo-Z の現在の標準 FPGA では使用さ れていません。

3.3 スイッチ

(1) 起動モード選択スイッチ

写真 11 の右側のスライドスイッチは、起動モード選択スイッチです。右側に切り替えると SD カード から起動します。左側に切り替えると、JTAG モードで起動します。

XILINX SDK を使ってデバッグをしたり、書き込みを行う場合は、左側に切り替えてください。

写真11 リセットスイッチと起動モード選択スイッチ

(2) リセットスイッチ

写真 11 の左側の赤いプッシュスイッチは、リセットボタンです。ZYNQ の PS_POR_B につながって いて、PL と PS をリセットします。

(3) ユーザスイッチ

基板上の青いスイッチは、ユーザ用スイッチです。FPGAのY11番ピンに接続されています。

写真 12 ユーザスイッチ

特電 TOKUDEN

3.4 LED

基板上には8つのユーザスイッチがあります。各LEDのFPGAとの接続を表2に示します。各LEDはFPGAの端子からLレベルを出力したときに点灯します。

			/ -
信号名	FPGA ピン番号	信号名	FPGA ピン番号
LED1	AA12	LED2	AB11
LED3	AC11	LED4	AA13
LED5	AB12	LED6	AB14
LED7	AB15	LED8	AC14

表3 LED の接続

3.5 クロック

基板上には2つのクロックソースがあります。

1 つは PS 用の 33.333MHz で、ZYNQ の PL の PS_CLK 端子に接続されています。このクロックを 利用するには、PS をプログラミングして FPGA 内部で PS→PL へと通さなければなりません。

もう1つのクロックは GTX 用のクロックで 150MHz です。これは MGTREFCLK1 に接続されていま す。GTX のリファレンスクロックですが、GTX から PL へと供給することができます。

4. 起動方法

4.1 通常の起動

本装置は通常は SD カードから起動します。SD カードに boot.bin といファイル名で ZYNQ の起動フ ァイルを保存しておき、スライドスイッチを右側に切り替えて、電源を ON します。

写真13 通常の起動(スイッチを右側にする)

4. 2 デバッグ時の起動

デバッグを行うため、FPGA や PS を個別に書き込む場合は、スライドスイッチを左側の JTAG モードにします。スライドスイッチを右側にした状態で、起動に失敗した場合(たとえば、SD カードが刺さっていないなど)、XILINX SDK から書き込んだり、デバッグしたりできないことがあります。

4.3 電源の供給

電源は、5V3A以上の容量を持った AC アダプタか安定化電源、もしくは Power Over Ether で給電し てください。異常動作時の過大な電流を早期に発見するためにも、開発時はできるだけ安定化電源から 供給するようにしてください。

5. サンプルアプリケーション

5.1 機器の設定

最初に行うことは Cosmo-Z に IP アドレス等を設定することです。まず、Cosmo-Z の SD カードを本体から抜き取り、PC上で setup というファイルをテキストエディタ等で開き、リスト1の赤色の部分を、お客様の環境に合うように変更してください。

なお、Cosmo-Z を起動した上で USB で接続し、コンソールから vi /mnt/setup で編集することもでき ます。vi で編集した場合は再起動前に必ず sync を行ってください。

Network setting
** BOOTPROTO is {none | dhcp}
DEVICE=eth0
BOOTPROTO=none
IPADDR=192.168.1.80
GATEWAY=192.168.1.1
NETMASK=255.255.255.0
HWADDR=02:0A:35:00:01:25
HOSTNAME=cosmoz
Optional configuration
ENABLE_DHCPD=no
USE_NTP=yes
SERVER=yes
AUTOSCRIPT=conf

リスト1 setup ファイルの変更箇所

HWADDR は Cosmo-Z に設定される MAC アドレスです。ネットワーク上で被らないように設定し てください。02:で始まる MAC アドレスはプライベートアドレスとして利用できます。なお、Cosmo-Z Version 1.3 以降ではオンボードで MAC アドレスに使用するオンボード ID チップが乗っているので、 その値を使用することもできます。

USE_NTP=yes にすると、起動時に NTP サーバ(ntp.nict.jp)に時刻を同期させます。しかしながら、 同期には数秒~10 秒程度かかるので、素早く起動させたい場合には no にしてください。

5.2 自動実行スクリプトの編集

Cosmo-Z は起動したときに SD カード上の conf というファイルに書かれたコマンドを自動的に実行します。初期状態ではリスト 2 のような設定になっています。必要に応じて内容を変更してください。

c freq 80	
g 1 fall 2048	
g 2 fall 2048	
g 3 fall 2048	
g 4 fall 2048	
g 5 fall 2048	
g 6 fall 2048	
g 7 fall 2048	
g 8 fall 2048	
g or	

リスト2 自動実行スクリプト

5.3 電源の投入

SD カードを Cosmo-Z に挿入し、電源を投入します。電源は必ず 5V を使用してください。9V や 12V を与えると壊れます。(Cosmo-Z TypeC 以降では 12V を与えることができます。)

写真 14 正常起動時の LED 表示

5. 4 Web アプリケーションの起動

Cosmo-Z の電源を投入したら、15 秒ほどで Linux が起動します。その後、ホスト PC の Web ブラウ ザを開いて Cosmo-Z の IP アドレスを入力すると Web アプリケーションのメインパネルが開きます。

Cosmo-Z Versio	on 1.30 メイン	計測の設定	ファイル 波形モニタ	管	理者メニュー				
	イン・パウリ								
JOSINO-Z クク 基本機能		現在状態							
装置時刻	2017年1月19日 18:	30:6 同期		計測状態	idle				
FPGAバージョン	17011901				拡張機能	Custom	Function Hardwa	reFFT SATA P	CIExpress USB3.0 GTX
起動時間	0日 0:19:9 7911981	0[ns]		ADC速度	80MHz				
設置場所	null 設定			現在温度	58.075757℃				
所有者	null 設定				HDD/SSD容量		-		
イベメロ	null 設定			SD力一ド容量					
ADC状態									
	チャネル								
SUB3	25	26	27	28	29		30	31	32
MAIN	1	2	3	4	5		6	7	8
SUB1	9	10	11	12	13		14	15	16
SUB2	17	18	19	20	21		22	23	24
表示を更新 波	形モニタ 計測の設	定 ファイル	管理者メニュー						

図4 Webアプリケーションのメインパネル

この画面では、Cosmo-Z上の時刻、起動時間、拡張機能の有無、温度、ADCの状態などが確認できま す。表示されている「現在温度」が 60℃前後であれば問題ありません。

5.5 ADC の設定

Web アプリを開いたら、メニューの「計測の設定」をクリックし、「Cosmo-Z 計測設定 2」画面 を表示させます。この画面では、使用されている AD コンバータの型番を確認したり、AD 変換のサ ンプリングレートの変更ができます。

Cosmo-Z Ve Cosmo-Z ADC設定 サンプリングレ	rsion 1.30 計測設)) メイン 定2	計測の設定	シーファイル	, 波形モ	二夕管	里者メニュー		
Cosmo-Z ADC設定 サンプリングレ	計測設分	定2							
ADC設定 サンプリングレ									
サンプリングレ	ADC設定								
	/ -ト	現在の設定:8 新しい設定:[0MHz 80 VMHz	変更					 周波数を変更する
ADCチップリセ	ヹット	*	波形モニタを	開く					
ADCチップ情報	R.	ADC1: AD96 ADC2: AD96	33(12bit) 801 33(12bit) 801	ИНZ ИНZ					② リセットを行う
ADCボード枚数	改	1∨枚							
ADCボードバー	ージョン	☑ADCは新碁	板である						
テストモード		□計算された	テスト波形な	⊵使用する					
ADC状態									
	チャオ	31L							③ すべてが緑色に
SUB3	25	26	27	28	29	30	31	32	なったことを確認する
MAIN	1	2	3	4	5	6	7	8	
SUB1	9	10	11	12	13	14	15	16	
SUB2	17	18	19	20	21	22	23	24	
ADC調整									
CH 777	いト ゲイ	~~ 渥3	af i	五新 借引	,				

図5 計測設定2 画面

サンプリングレートを変更する場合は、周波数を変更して「変更」ボタンを押してください。 ADC チップリセットボタンは、ADC の同期が取れなくなった時に使用します。このボタンを使 用することはほとんどありません。

5.6 波形モニタ方法

メインメニューの「波形モニタ」をクリックすると、波形モニタ画面が開きます。基本的にはこ の画面で波形をモニタします。

図6 波形のモニタ

波形モニタ画面では、以下の操作が行えます。

トリガメニュー

Auto:連続してサンプリング(デフォルト) Normal:トリガが入ったときだけサンプリング Single:トリガが入ったとき1回だけサンプリング

トリガ設定メニュー

各 ADC チャネルのトリガ発生条件を設定します。

OFF・・・そのチャネルではトリガは発生しません

Rise・・・指定値を横切って立ち上がったときにトリガが発生します

- Fall・・・指定値を横切って立ち下がったときにトリガが発生します
- Cross・・・指定値を横切ったときにトリガが発生します

Discri・・・ペデスタルレベル-指定値となった場合にトリガが発生します

Upper・・・指定値以上のときにトリガが発生します

Lower・・・指定値以下のときにトリガが発生します

Linkage・・・他のチャネルでトリガが発生した場合にトリガを発生させます

- ・ペデスタルレベルは、現時点での最頻値を示しています。
- ・パルスカウントは、1秒間にトリガが発生した回数を示しています。最大値は 65535 です。1秒間に 65535 回以上のトリガが発生した場合は、65535 と表示されます。
- ・パルス高さは、トリガが発生させたパルス波形の高さを表示します。
- また、トリガタイプや値を変更したら、「変更」ボタンを押してください。

トリガモード

全体のトリガ動作を設定します。

・OR・・・どれか1つのチャネルでトリガが発生した場合に波形をキャプチャします ・AND・・・すべてのチャネルでトリガが発生した場合に波形をキャプチャします ※全体のトリガは、チャネルのトリガ条件が OFF 以外になっているチャネルで評価 されます。全体のトリガを AND に設定していても、チャネルのトリガ条件が OFF に なっているチャネルは無視されます。

長さメニュー

何ポイントのデータをサンプリングするかを指定します

表示範囲メニュー

自動:現在の波形を最大限詳しく見られるように表示範囲が自動的に変わる フル:全範囲を表示する

ユーザ指定:ユーザが指定した横軸・縦軸の範囲を表示する

5.7 FFT とヒストグラム表示

FFT ボタンを押すと、現在の FFT スペクトラムが表示されます。ヒストグラムボタンを押すと、 現在の入力のヒストグラムが表示されます。これらは、入力のノイズの状況等を確認するときに使 用するとよいでしょう。

5.8 ファイル機能

波形モニタ画面で記録ボタンを押すと、現在の波形をファイルに保存することができます。

Cosmo-Z 波形キャプチャ				
キャプチャ形式	〇生波形 이	長時間トリガ ○低レー	トパルス	
キャプチャ長	1000		ポイント	
ファイル名	cap_2016	0119_154415		
コメント				
	キャプチャ	する形式を選択してく	ださい	
		li i	始 キャンセル	
	又 10	記録ダイ	アログ	

記録ダイアログが開いたら、キャプチャの形式を指定し、ファイル名を設定します。

キャプチャ形式

図9 記録ボタン

生波形 … オシロのようにそのまま記録します

長時間トリガ … 長時間のプレトリガを実現します

低レートパルス … 放射線の計測時に使います。トリガが発生した時点での、 波高値、発生時刻、チャネル番号、生波形が記録されます。 トリガが発生していない期間の波形は記録されません。 記録された波形はSDカードの/mnt/dataフォルダに格納されます。格納されたファイルはメインメニューの「ファイル」で、一覧表示することができます。

Cosmo-Z Version 0.82	イン 計測の設定 ファイル	波形モニタ 管理者メニュー			
Cosmo-Z 計測ファイル	レー覧				
更新 42 ファイル名 品	種類	▲ 日付 ♥	▲ サイズ(Bytes) ♥	削除	
cap_20150911_123646	生波形データ	2015/09/11 12:38:38	5152	â	Ø
cap_20150911_121300 🛓	生波形データ	2015/09/11 12:13:13	17152	Ê	Ø
cap 20150010 174820	低レートパルス	2015/09/10 17:48:51	926720	â	Ø

図11 ファイル一覧表示

ファイル名をクリックすると、その波形が表示されます。

図 12 ファイルから波形表示

図 12 の画面で「カウントレート」をクリックすると、1 分あたりのカウント数の変化が表示されます。

図 13 1分あたりのカウントレート表示

また、図 12 の画面で「スペクトラム」をクリックすると、横軸が波高値、縦軸が頻度となる簡易 的な MCA 表示となります。

図 14 簡易スペクトラム表示

図 11 のファイル一覧表示画面で、ファイル名の右側に表示されている デイコンをクリックすると、計測データをパソコンにダウンロードできます。データは別途提供する Windows ツールでデ コードできます。

6. リモート操作アプリ

Cosmo-Z には Windows からリモート操作するための Windows アプリ(cosmoz.win)と、LabView から操作するためのアプリが用意されています。

Windows アプリおよび LabView アプリは CD-ROM に収録されている他、弊社 Web サイトからダ ウンロードすることもできます。詳細は下記の URL をご覧ください。

• Windows \mathcal{TT} http://www.tokudenkairo.co.jp/cosmoz/winapp.html

• LabView \mathcal{TT} http://www.tokudenkairo.co.jp/cosmoz/labview.html

図 15 Windows アプリ

図 16 LabView アプリ

7. 注意事項

機器や記録メディアに損傷を与えないようにするため、必ず以下のことをお守りください。

- 拡張子基板を使用する場合は、電源通電中に子基板を抜き差ししてはいけません。子基板の抜き 差しは必ず電源 OFF の状態で行ってください。
- ② 本装置のアナログ入力部は保護ダイオードが入っていますが、このダイオードが ON するような 使い方はしないでください。過大な電圧が加わるとアナログ系統を損傷する可能性があります。 特に、±3V以上の電圧を加えないようにしてください。
- ③ 動作中に SD カードを抜き差ししないでください。ディスクの中身の同期ができなくなり、最悪の場合、ファイルシステムを破損します。シャットダウンの時はできるだけ halt コマンドで停止させてから電源を OFF してください。
- ④ ボード上の半固定抵抗を回さないでください。

『高速 ADC&信号処理ボード「Cosmo-Z」取扱説明書』
第1版 平成 26年12月14日
第2版 平成 28年1月19日
第3版 平成 29年1月19日
特殊電子回路株式会社
©Copyright 2014-2017 特殊電子回路㈱ All rights reserved. 無断転載を禁じます